Name | Description | Eg |
abs | the absolute value (size) of a number | abs(-3.9)=3.9 |
acos | arc cosine | acos(0.5)=1.047197551196598=60° in radians |
asin | arc sine | asin(sqrt(3)/2)=1.047197551196598=60° in radians |
atan | arc tangent | 4 * atan(1)=3.141592653589793=90°= Pi radians |
ceil | round up to the nearest integer | ceil(-3.9)=-3,ceil(2.1)=3 |
cos | cosine of an angle (in radians) | cos(60*Pi/180)=0.5 |
E | e | e=2.718281828459045 |
exp | e to the power of | exp(1)=2.718281828459045 |
floor | round down to the nearest integer | floor(-3.9)=-4,floor(2.1)=2 |
log | log to base e | log(E)=1,log(sqrt(E))=0.5 |
Phi | golden section | Phi=1.618033988749895 |
phi | golden section | phi=0.618033988749895 |
Pi | pi | pi=3.141592653589793 |
pow | pow(x,p) is x^{p} | pow(2,3)=8 |
random | a random number between 0 and 1 | random()=0.42190062543 |
round | round to the nearest integer | round(-3.9)=-4, round(3.9)=4 |
sin | sine of an angle (in radians) | sin(Pi/2)=1 |
sqrt | square root | sqrt(2)=1.414213562373095 |
tan | tangent of an angle (in radians) | tan(Pi/4)=1 |
fib, Fib or F | Fib(n) is the n-th Fibonacci number | F(4)=3,F(-5)=5 |
luc, Luc or L | Luc(n) is the n-th Lucas number | Luc(0)=2,Luc(1)=1 |
G | G(a,b,n) is the n-th General Fibonacci number where G(a,b,0)=a,G(a,b,1)=b | G(0,1,n)=F(n),G(2,1,n)=L(n) |