A Continued Fraction Calculator version 17 February 2014

This interactive calculator page accompanies a full explanation of Continued Fractions.

Try these examples...
Select one. Input boxes will then be filled in for you. Press the ARROW button that has then been changed to or to do the conversion.
Results of calculations are shown in the RESULTS area. Blue arrows and buttons will put new values in appropriate INPUT boxes too.
More help on input is displayed if your just rest your mouse over a box and don't click on it.

C A L C U L A T O R    
Fraction:
sqrt
--
Continued Fraction:
[ ,
]
Decimal number:

up to best rational approximations
Show: fraction? cf? number? error?

R E S U L T S


The Mathematical functions and constants available in the "Decimal" box are:
NameDescriptionEg
abs the absolute value (size) of a number abs(-3.9)=3.9
acos arc cosine acos(0.5)=1.047197551196598=60° in radians
asin arc sine asin(sqrt(3)/2)=1.047197551196598=60° in radians
atan arc tangent 4 * atan(1)=3.141592653589793=90°= Pi radians
ceil round up to the nearest integer ceil(-3.9)=-3,ceil(2.1)=3
cos cosine of an angle (in radians) cos(60*Pi/180)=0.5
E e e=2.718281828459045
exp e to the power of exp(1)=2.718281828459045
floor round down to the nearest integer floor(-3.9)=-4,floor(2.1)=2
log log to base e log(E)=1,log(sqrt(E))=0.5
Phi golden section Phi=1.618033988749895
phi golden section phi=0.618033988749895
Pi pi pi=3.141592653589793
pow pow(x,p) is xp pow(2,3)=8
random a random number between 0 and 1 random()=0.42190062543
round round to the nearest integer round(-3.9)=-4, round(3.9)=4
sin sine of an angle (in radians) sin(Pi/2)=1
sqrt square root sqrt(2)=1.414213562373095
tan tangent of an angle (in radians) tan(Pi/4)=1
fib, Fib or FFib(n) is the n-th Fibonacci numberF(4)=3,F(-5)=5
luc, Luc or LLuc(n) is the n-th Lucas numberLuc(0)=2,Luc(1)=1
GG(a,b,n) is the n-th General Fibonacci number where G(a,b,0)=a,G(a,b,1)=bG(0,1,n)=F(n),G(2,1,n)=L(n)

Valid HTML 4.01! © 2003-2014 Dr Ron Knott      enquiry (at) ronknott (dot) com
updated: 17 February 2014